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Abstract 
          STOCK MARKETs are important aspect of fiscal statistics, which spores the delight 
over the years to originate better apocalyptic models. Due to nonstationarity and noise in 
stock market data, financial model produces unreliable and spurious results and leads to poor 
understanding and forecasting. To erase these problems, log-transformation was used to 
decrease the variability and then, Maximal Overlap Discrete Wavelet Transform (MODWT) 
was used on the log transform data for construction of time scale decomposition graphs and 
de-noises the stock market data with Daubechies filter. From the above study, we identify 
that, on the estimated values of graph metrics, the length of the wavelet filter chosen has a 
greater effect when compared with log-transformation and row data.  
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1 Introduction 
            From the past few decades, stock price forecasting has drawn substantial surveillance 
among researchers as well as policy makers because of the crucial role in economy. From 
macro-economic prospective, it provides basic information for government decision making, 
whereas, from micro-economic prospective, it gives idea about investor’s decision. In simple 
words, the principal target behind the stock price prediction is to realize best outcome with 
minimum risk.  
          Basically, stock market data are non-stationary in nature and heteroskedastic processes 
with random noise and exhibit changing frequencies over time (Luo et al., 2016). Wavelet 
transform has become very popular in the field of stock market analysis due to its pliability to 
handling non-stationary data (Kumar et al., 2011). It effectively eliminates the unnecessary 
signal in wavelet domain and recovers the coveted signal from an inverse wavelet transform 
with small waste of main details (Bemporad et al., 2002).  
          A useful application of wavelet transforms in investment theory was advocated by 
Chakrabarty et al., (2015). Among two types of wavelet transforms, various researchers did a 
sensational work to rate the performance of MODWT over DWT (Bolzan et al., 2009; 
Stolojescu-Crisan et al., 2010; Dghais and Ismail, 2013; Follis and Lai, 2020). 
          In order to study the strong to moderate cointegration, Pinho and Madaleno (2009), 
used the MODWT, cross wavelet technique and regression to study the world’s major eleven 
stock markets. Similar work was also done by Ranta (2013), to examine the correlation 
composition of the major world markets by using the wavelet coherency. Similarly, Rua and 
Nunes (2009), used measures of dispersion to get figures for the major developed economies 
and then, wavelet squared coherency were applied to the time and frequency varying co-
movement. 
          The accessible belles-lettres on implementation of MODWT on financial statistics is 
divided into four main categories: Transform, Variance Decomposition, Outlier Detection 
and De-Noising. This paper is basically concentrated on the study of the above four 
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categories due to the complexity of heterogeneous financial time series, which results in risks 
and correlation.  
          The remaining structure of the article proceeds as follows. Section 2 describes the data 
used in this article and their sources. Section 3 overview the methodology used. In Result and 
Discussion: Normality test and log transformation, MODWT based multiresolution analysis, 
Variance Decomposition, De-noising with MODWT transformation and Stationarity test are 
analysed in Section 4. Finally, section 5 concludes the paper. 

2 Data and their Sources 
          The daily historical S&P BSE Sensex data from 6th April, 2015 to 31st March, 2022 
having a total number of 1732 observation used in this research was taken from the official 
website of Bombay Stock Exchange and analyzed with the help of SPSS and E Views - 12 
Software. In order to achieve the reliable results, following methods are adopted and before 
log transformation results are compared to after log transformation results. 

3 Research Design and Methodology 
          The prime intention of the research is to propose a pre-sample forecast of S&P BSE 
Sensex, so that a reliable and sensitive forecasting model should be applied with minimum 
error with following methodologies. 
� Firstly, K-S test was used to check whether the observed S&P BSE Sensex data are 

normal or not, because significantly skewed data grossly underestimates the forecast 
values and produce unreliable and spurious results. 

� After studying the skewed behaviour, log transformation was done in S&P BSE Sensex 
data to escalate its illustrability and afterwards for the statistical analysis. 

� Then, MODWT with Daubechies filter was used on both the log-transformation and row 
data for construction of time scale decomposition graphs. 

� Variance decomposition was analysed with the help of time scale decomposition graphs 
and scale-by-scale decomposition of variance produces by spectrum table. 

� Persistent behaviour of both the log-transformation and row data were analysed by 
Variance Spectrum Distribution and Cumulative Variance for feasibly affirmation of a 
unit root.  

� Then, a unit root test on the series will confirm the present / absent of stationarity.  

4 Results and Discussion

4.1 Normality Test and Log Transformation 
          During the study period, Skewness of S&P BSE Sensex, before log transformation is 
moderately skewed. To overcome this problem, log-transformation was used on S&P BSE 
Sensex data for approximate confirmation to normality and increase the interpretability and 
subsequently for the statistical analysis (Lütkepohl and Xu, 2010).  

Figure 1: S&P BSE Sensex after log transformation. 
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    For testing the normality, the Kolmogorov - Smirnov (K-S) statistic after log 
transformation was 0.086 (Asymp. Sig. > 0.05) and leading to the conclusion that daily 
observed S&P BSE Sensex is normally distributed and feasible to forecast after log 
transformation (Simard and L’Ecuyer, 2011).  

4.2 MODWT Based Multi–Resolution Analysis 
          At the starting point, we assumed that, log returns of S&P BSE Sensex were non-
stationary in nature. To extract seasonal trend and abrupt components and allow for a better 
explication, MODWT is used to decompose the data into a non-orthogonal set of components 
which uses all of the available observations with different frequencies (Polanco Martínez et 
al., 2018).  
          For estimating the scaling and wavelet coefficients, MODWT does not suffer from 
level of sample size to an integer multiple of 2� (Percival and Walden, 2000), where t is the 
level of decomposition and do not require any length adjustments. It is inspecting that, 
estimators based on MODWT are asymptomatically more efficient as compared to DWT 
(Percival and Mofjeld, 1997). Since the MODWT is a non-orthonormal transform and does 
not require any length adjustments, the S&P BSE Sensex data decomposed into nine time-
scale components with Daubechies filter, which is smoother than Haar wavelet filters and 
provides better un-correlated-ness across scales (Cornis et al., 2006). 
          In other words, the Daubechies wavelet filter with periodic boundary conditions of 
length L = 8, decomposes level the S&P BSE Sensex data with maximum decomposes level t 
= 8 and produces nine wavelet and scaling filter sets of coefficients (Daubechies, 1992). 
          At the first scale, some wavelet coefficients exceed the threshold bounds in both the 
series: normal and log transform of S&P BSE Sensex data and the transient features keep on 
at scale two and three onward, but after that, don't seem to contribute much. Higher 
frequencies are dominated by lower frequency forces and likely to be stationary after log 
transformation, whereas, reverse is seen in before log transformation series.  
          Finally, for each scale, the coefficient affected by the boundary are displayed in red, 
their count in blue and a vertical dashed black line shows the region upto which the boundary 
conditions persist for each scale. Boundary coefficients are important for longer filters and 
higher scales. 

SERIES Wavelet 5 (W5)

Wavelet 1 (W1) Wavelet 6 (W6)

Wavelet 2 (W2) Wavelet 7 (W7)

Wavelet 3 (W3) Wavelet 8 (W8)

Wavelet 4 (W4) Scaling 8 (V8)

20,000

30,000

40,000

50,000

60,000

70,000

250 500 750 1000 1250 1500

S_P_BSE_SENSEX

­8,000

­4,000

0

4,000

8,000

12,000

250 500 750 1000 1250 1500

219 Coefs. Affected by Boundary

W5 (Changes on Scale 16 units)

­8,000

­4,000

0

4,000

8,000

12,000

250 500 750 1000 1250 1500

9 Coefs. Affected by Boundary

W1 (Changes on Scale 1 unit)

­8,000

­4,000

0

4,000

8,000

250 500 750 1000 1250 1500

443 Coefs. Affected by Boundary

W6 (Changes on Scale 32 units)

­10,000

­5,000

0

5,000

10,000

250 500 750 1000 1250 1500

23 Coefs. Affected by Boundary

W2 (Changes on Scale 2 units)

­8,000

­4,000

0

4,000

8,000

12,000

250 500 750 1000 1250 1500

891 Coefs. Affected by Boundary

W7 (Changes on Scale 64 units)

­8,000

­4,000

0

4,000

8,000

12,000

250 500 750 1000 1250 1500

51 Coefs. Affected by Boundary

W3 (Changes on Scale 4 units)

­8,000

­4,000

0

4,000

8,000

12,000

250 500 750 1000 1250 1500

1732 Coefs. Affected by Boundary

W8 (Changes on Scale 128 units)



106	 Journal of Statistics and Computer Science
4 | P a g e  

 

Figure 2: MODWT based time scale decomposition of S&P BSE Sensex before log 
transformation. 
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Figure 3: MODWT based time scale decomposition of S&P BSE Sensex after log 
transformation 

4.3 Variance Decomposition
          The contribution of variance by wavelet coefficient at each scale is demonstrated in 
spectrum table. The column titled Variance, Relative Proportion and Cumulative Proportion 
respectively is the variance contributed to the total at a given scale, the proportion of overall 
variance contributing to the total at a given scale and its cumulative total. 

Table 1: Spectrum Table of S&P BSE Sensex before log transformation. 

Scale Variance Relative 
Proportion

Cumulative 
Proportion 

95% Conf. Interval
Lower Upper

W1 29235.23 0.0088 0.0088 26206.85 32263.61 
W2 41588.35 0.0125 0.0213 35331.76 47844.95
W3 67893.06 0.0205 0.0418 53116.42 82669.69 
W4 134736.70 0.0406 0.0824 96075.59 173397.90
W5 273617.60 0.0824 0.1648 163368.3 383867.00 
W6 757450.00 0.2282 0.3930 241820.8 1273079.00
W7 2014661.00 0.6070 1.0000 54596.82 3974726.00
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Distribution Cumulative Variance 

Figure 4: Variance Spectrum Distribution and Cumulative Variance before log 
transformation. 

   Majority of the variation before log transformation (Figure 4) in the S&P BSE Sensex 
series comes from higher scales or lower frequencies and have an indication of scattered 
behaviour in the original data and possibly evidenced that data are non stationary and not free 
from unit root, whereas, the variation after log transformation (Figure 5) are stationary and 
free from unit root. 

Table 2: Spectrum Table of S&P BSE Sensex after log transformation. 

Scale Variance Relative 
Proportion

Cumulative 
Proportion 

95% Conf. Interval 
Lower Upper

W1 6.73e-05 0.5205 0.5205 5.94e-05 5.71e-05 
W2 3.16e-05 0.2444 0.7649 2.72e-05 3.60e-05
W3 1.46e-05 0.1131 0.8780 1.14e-05 1.79e-05 
W4 7.26e-06 0.0562 0.9342 5.23e-06 9.30e-06
W5 4.37e-06 0.0338 0.9681 2.74e-06 6.01e-06
W6 2.29e-06 0.0177 0.9858 9.50e-07 3.63e-06 
W7 1.83e-06 0.0142 1.0000 4.69e-09 3.66e-06

Distribution Cumulative Variance

Figure 5: Variance Spectrum Distribution and Cumulative Variance after log transformation. 

4.4 Denoising with MODWT Transform 
           After completing the MODWT-based denoising process, the stable denoised data are 
obtained with smoother continuous trend. A closer look reveals that, the heterogeneous nature 
occurred in denoised data of S&P BSE Sensex before log transformation is an indication of 
abnormal fluctuation caused by random chances.  

De-noised Function Noise  

Figure 6: De-Noised Function and Noise of S&P BSE Sensex before log transformation.
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are filtered and perpetuate the trend with more sensitive to normal points and ameliorate the 
continuity of the trend (Figure 7). 

De-noised Function Noise 

Figure 7: De-Noised Function and Noise of S&P BSE Sensex after log transformation. 

4.5 Stationarity Test 
          In order to ascertain the series stationarity, ADF and PP test are conducted and 
according to their t-statistic, the stationarity could be identified (Said and Dickey, 1984; 
Phillips and Perron, 1988).  

Table – 3: Summary of ADF and PP test. 

The optimal lag for ADF test is selected based on the AIC criteria and Bartlett Kernel method 
and Newey - West method is used for fixing the truncation lag and for spectral estimation in 
PP test (Mishra, Arunachalam and Patnaik, 2018). The calculated values < tabulated t-
statistic at 1%, 5% and 10% level of significance for both the ADF and PP test and hence the 
null hypothesis is rejected and confirms the existence of stationarity after log transformation 
of Sensex. 

5 Conclusion 
          De-noising analysis through MODWT is a powerful mathematical contrivance for 
stock market forecasting. It is simple to work out and does not depend on certain parameter 
choices and model preference criteria. It decomposes the stock market data into a non 
orthogonal set of units with distinct prevalence and estimates the scaling and wavelet 
coefficients. While the main purpose is to introduce a wavelet methodology in our study for 
decomposing the S&P BSE Sensex data based on MODWT to examine the graph matrices 
before log transformation and after log transformation. The variances before log 
transformation and after log transformation yield a specific difference after examining the 
variance, relative proportion and cumulative proportion in spectrum table using the LA 8 
wavelet. After getting the stationarity in log transformation data, a robust real time stock 
prediction technique should be used with minimum risk. Basically, here we concentrate on to 
bespeaking how MODWT model can be used as a fact-finding instrument for stationarity 
instead of a conventional test. 
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Variables 
ADF Test PP Test 

t-stat. Prob* Level of Significance t-stat. Prob* Level of Significance 
1% 5% 10% 1% 5% 10% 

Before log 
transformation 0.16 0.97 -3.43 -2.86 -2.57 0.27 0.98 -3.43 -2.86 -2.57 

After log 
transformation -11.35 0.00 -3.43 -2.86 -2.57 -42.93 0.00 -3.43 -2.86 -2.57 
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